8 Interesting Facts about Boeing 777x

The Boeing 777x is expected to be seen in the space from 2020. The 777x will come in three variants: 777-8, 777-9 and 777-10x. Making of the 10x version is only proposed and not finalized yet. All the versions of the  Boeing 777x airplane will have new engines, new design and new technology for more efficient flying and better passenger experience. Read on for interesting Boeing 777x facts.

Boeing 777x Facts

1. Boing 777-8 and 777-9 are coming out to compete with Airbus A350, and the 777-10x is intended to compete with Airbus A380, which is the largest commercial airplane now.

2. The newer design will have higher ceilings, larger windows, increased humidity and cabin pressure for even better breathing.

3. This will be the 1st ever airplane to have folding wing-tips. This is to allow the plane to have shorter wingspan when it is moving on the runway.

4. Orders for 306 Boeing 777-8 and 777-9 airplanes combined have already been placed by Qatar Airway, Emirates, Etihad Airways, Lufthansa, Cathay Pacific and All Nippon Airways.

5. The Boeing 777x will use General Electric's engine GE9x that will burn 10% less fuel than the older engine models.

6. The Boeing 777x will be the first ever airplane to have touch-screens in the flight deck.

7. The 777x is going to be the world's longest commercial airplane ever.

8. The primary structure material for the 777x will be made in Al Ain, UAE, rather than at the native airplane material production units in Europe.

These were the facts about Boeing 777x. Hope you enjoyed them!

Also read:

Most Popular Certifications for Civil Engineers

Are you a Civil Engineer? You may like to look at the top certifications for Civil Engineers, which are highly in demand by the employers:

FE (Fundamentals of Engineering)

The exam fee is US$ 225. This is a first step for anyone before he/she can go for EIT or PE certification. Exam registrations for FE, PE, EIT are done online at http://ncees.org/ and the exam is held at Pearson VUE testing centers worldwide.

PE (Professional Engineer)

Pass rate for Civil Engineers is about 70%.  Course fee in US is about $1400.   Exam fee is US$ 350

One needs to work under a Professional Engineer for 4 years, should be a graduate   and pass the FE (Fundamentals of Engineering) exam before he can become eligible for the PE exam.

EIT (Engineer in Training)

One needs to have passed FE (Fundamental of Engineering) exam, should be a graduate and must have a least four years of engineering experience to be eligible to sit in the EIT exam. Pass rate for Civil Engineers is 75%. The exam fee is US$ 80

Oracle Primavera

It is a must-know software for every Civil Engineer. Primavera allows detailed planning, execution, tracking and monitoring of project work. 

There are huge benefits of using Primavera, and every Civil company whether in US or abroad requires its employees to know Primavera.

Once the training is obtained, one can sit in the Oracle Primavera exam, by registering online at oracle.com. The exam fee is US$ 215 and it's a 105-minute exam, with 67% passing marks. There is no requisite to sit in the Primavera exam.

PMI-SP (Scheduling Professional)

This certification is about scheduling concepts and teaches how to effectively plan and monitor project work, using different tools, techniques and methods.

The exam is held at Prometric testing center. One can register for the exam at pmi.org. The exam fee is US$ 670

Also read:

Different Types Of Suspension Bridges

A suspension bridge is the type of a bridge, which is mainly concerned with the application of tension than compression. These bridges are usually suspended by the main cables (chain or rope) that are anchored with the towers at both ends of the bridge. Earlier, towers were not provided in suspension bridges because they were usually constructed for short spans. But nowadays, among all the longest bridges of the world 14 bridges are suspension bridges. There are the many types of suspension bridges that exist today, described below:

Simple Suspension Bridge

It is the oldest type of suspension bridge, usually constructed as a foot bridge. In this type of bridge, a flexible deck is provided which is supported by the cables anchored to the earth.

Under Spanned Suspension Bridge

In this type of suspension bridge the main cables are provided below the deck. The cables are anchored to the ground similarly as the above type. Few numbers of suspension bridges have been constructed like this due to the instability of the deck.

Stressed Ribbon Bridge

It is the modified form of the simple suspension bridge in which deck lies on the main cables but it is stiff not flexible.

Suspended-Deck Suspension Bridge

In this type of suspension bridge, the stiffed deck is attached to the main cables with the help of suspenders. This type is suitable for heavy traffic and light rail.

Above are the most common types of suspension bridges. Some types of suspension bridge are hybrid types. These types of suspension bridges have some portion of deck similar to under-spanned suspension bridge.

Answering: Why Do Ships Not Sink in Water?

Almost everyone of us would have seen ships and boats sailing in water but how many of you ever thought about the science behind it. Isn't that strange to know that heavy steel ships don't sink in water whereas a small metallic pen sinks down? So, why do ships not sink in water, read on to find out.

No doubt the floating boats have signs of some Supernatural creator in them. He holds the heavy navigational traffic in water. But what is the mechanism behind it?

Mechanism Behind Floating Ships

Two main factors in ship design keep the ship floating:

1. Weight of ship (loaded and unloaded).

2. Shape of ship.

The ship designers calculate the weight of loaded ships and compare it to the weight of the water that will be displaced when the ship is placed in the water. The more water that is displaced, the higher the ship will float (i.e. in theory, if you keep loading a ship, its weight will exceed the weight of displaced water and it will sink).

Buoyancy

The tendency of a body to uplift an immersed body, because of the upward thrust of the liquid, is known as Buoyancy. The force tending to uplift the body is called the Force of Buoyancy or buoyant force and is equal to the weight of the liquid displaced. When a body is immersed wholly or partially in a liquid, it is lifted up by a force equal to the weight of liquid displaced by the body. This statement is known as Archimedes Principle.

According to Archimedes Principle:

An object floats when it has displaced its weight in the medium, in which it is floating. A large ship is hollow and big and easily displaces its weight in the ocean or fresh water. That's why it floats easily and not sinks in water.

Conclusion

1. If the force of buoyancy is more than the weight of the liquid displaced, then the body will float.

2. If the force of buoyancy is less than the liquid displaced, then the body will sink down.

More simply, if the volume of water displaced is more than the volume of object, the object will float.

Now you know why ships don't sink. That was interesting to learn about Buoyancy, that's the law create by God, this is indeed very amazing.

Tag: why does a ship not sink in water

Solar Energy vs Wind Mills vs Nuclear Power

Solar energy nuclear power and wind mills are the three common renewable energy sources that are easily available. Their details, limitations and issues are also mentioned below:

Solar Energy

The most popular and simple way of alternate energy is solar energy i.e. the electricity produced by sun's radiation. There are two methods of achieving the above-mentioned goal:

1. Photovoltaic Cells

A photovoltaic cell converts sunlight directly into electricity. These cells normally produces 1-2 Watts of electricity which is not sufficient enough to operate appliances, therefore a number of such cells are bound together to form large modules and even these modules can be connected to form arrays to produce required power output. PV systems can easily be used at any remote site like RF stations. They are also used to power watches, calculators, road signs and streetlights. Electricity produced by these modules produces Direct Current (DC) whereas the normal home appliances that we use are Alternate Current (AC) appliances therefore an inverter is required to convert the DC into AC.

2. Solar Power Plants

They indirectly generate electricity when the heat from solar thermal collectors is used to heat a fluid that produces steam to move the turbine that is connected to ordinary generators.

Limitations

The output of solar energy systems depend on amount of solar radiation produced by the sun at that particular site and at that particular time of the year. Moreover, the PV modules are only 18% efficient however; efforts are being made to increase their efficiency to a remarkable level. 

Wind Mills

The windmill systems includes wind turbine with a conventional generator. The wind flowing produces mechanical energy in a turbine that is converted into electricity from a conventional generator coupled to the turbine. These systems works essentially the same as generation from fossil fuels except that instead mechanical energy produced by using steam it is produced from the combustion of fossil fuels, the mechanical movement is produced by the wind flow. Modern wind turbines range from 600 kW to 5 MW of power output, although turbines with rated output of 1.5–3 MW have become very common for commercial use.

Limitations

The power output of a turbine is a function of the cube of the wind speed, so as wind speed increases, power output increases. Areas where winds are stronger and more constant, such as offshore and high altitude sites are preferred locations for wind farms. Since wind speed is not constant, the energy production also varies.

Nuclear Power Plants

Nuclear power plants normally use nuclear fission reaction to produce energy. In fission the nucleus of large, atoms such as uranium 235 or plutonium 239, is split into two or more smaller nuclei producing large amount of kinetic energy along with free neutrons and gamma radiation. The free neutrons are used to produce more such fission reactions. A cooling system removes heat from reactor core and transports it to the area where thermal energy is used to heat fluid producing steam to rotate the turbine coupled with conventional generators.

Issues

It is fact that the nuclear waste is hazardous to the environment but these risks can be eliminated by using improved method to handle the waste products. Moreover, nuclear reactors produce virtually no air pollution and the energy produce is much higher than the fossil-fuel generators. In addition, nuclear power produces far less waste material than fossil-fuel based power plants. Coal burning plants are particularly noted for producing large amounts of toxic and mildly radioactive ash due to concentrating naturally occurring metals and radioactive material from the coal.

Limitations

The nuclear power plants have high initial investment and the maintenance cost is also very high.

Conclusion

The renewable energy systems use fuel that has unlimited reserves, free of cost and generalized existence like sun-rays for solar systems and air for wind mill systems, even uranium for nuclear power plants are very abundant in nature. It is approximately as common as tin or germanium in Earth's crust, and is about 35 times more common than silver. In addition, more importantly they are none or far less pollutant than the conventional sources.

However, these renewable energy systems produce no air or water pollution but do have some indirect impacts on the environment. For example, manufacturing the photovoltaic cells used to convert sunlight into electricity consumes silicon and produces some waste products. In addition, large solar thermal farms and windmill can also harm desert ecosystems if not properly managed.

Man in the name of technology and scientific advancement does these damages to the Mother Earth like the weapons that we make to safe lives are actually killing ourselves by one way or the other. It is we who in the blind quest of technological advancement had willing or unwillingly destroyed the entire ecological system and it is our prime duty now to save it as our survival depends on its existence.

Also read:

Tag: Solar Energy vs Wind Mills vs Nuclear Power 

Free Joomla! templates by AgeThemes